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Abstract

The aim of thismanuscript is to solve the initial-value problems of neutral delayVolterra integro-
differential equationswith constant or proportional delays. Hence, a proposed hybrid technique
named as an implicit multistep block method with an off-step point (1OBM4) is formulated for
the numerical solution of NDVIDE. A LMM associated with an off-point is known as hybrid
LMM. The proposed technique, 1OBM4, attempts to solve the problem synchronously in a block
manner. Moreover, a Taylor expansion is implemented to develop 1OBM4 in predictor-corrector
mode. Two different approaches are presented in order to solve both integral and differential
parts of the problem. Some analyses on 1OBM4 are considered in terms of order and conver-
gence of the method. A stability polynomial is also obtained for the stability regions to be con-
structed. In the last section, some numerical results are demonstrated to show the applicability
of 1OBM4 in solving NDVIDE with constant or proportional delays.

Keywords: constant delay; constant step size; implicit multistep block method; neutral delay
Volterra integro-differential equations; off-step point; proportional delay.
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1 Introduction

Recently, the applications of neutral delay Volterra integro-differential equation (NDVIDE)
have shown significant advances in biological and physical sciences. Many analytical and numer-
ical solutions have been proposed by different authors to resolved the problems yet there is still
a huge gap in the application of linear multistep method (LMM). In recent times, NDVIDE has
received great attention as a propermodel for time delay problems, particularly in the engineering
and biological sector. The pantograph delay is a type of time delay system, however unlike other
time delay systems, it operates proportionally. It gets its name from the pantograph on a train, a
device located on the roof of an electric train, [12].

In this contribution, a role that may be played by NDVIDE will be indicated in modeling some
cell development phenomena that exhibit a delay in their response to events. Every scientific
discipline considers the challenge of developing a mathematical model to explain the behaviour
of a system as characterized by a time series of observations to be central, [5]. The time delay
issue should be taken into account from the beginning of the design process since it is one of the
variables that affect the dynamic. A neutral type of DVIDE typically emerges in the modeling of
linked oscillatory systems, where the oscillators are connected and allow for the transfer of energy
between them, as a comparison example. The following time delay is used to realistically depict
the model,

y′(x) = f
(
x, ρ0y(x)

)
+

∫ x

x−τi

K
(
x, ρ0y(x), ρ1y(x− τi), ρ2y

′(x− τi)
)
, x ≥ x0,

y(x) = ϕ(x), x ≤ x0,

y′(x) = ϕ′(x), x ≤ x0,

(1)

where y(x− τi) and y′(x− τi), for 0 ≤ i ≤ n, are the expressions of delay solutions and its deriva-
tive, τi is known as the delay, f

(
x, ρ0y(x)

)
is the function containing either the expression of delay

solution or its derivative, while K
(
x, ρ0y(x), ρ1y(x − τi), ρ2y

′(x − τi)
)
is a function called the

kernel or the nucleus of the integral equation, [28]. Both f
(
x, ρ0y(x)

)
and K

(
x, ρ0y(x), ρ1y

(
x −

τi
)
, ρ2y

′(x− τi
))

need to be continuous. Since just a constant value of delay is taken into account,
equation (1) is referred to as a constant form of NDVIDE. In addition to continuous NDVIDE, a
proportional delay (another name for the pantograph equation) type is also crucial for the ad-
vancement of the industry. The following is a general illustration of the pantograph equation that
NDVIDE is modeling,

y′(x) = f
(
x, ρ0y(x)

)
+

∫ x

qx

K
(
x, ρ0y(x), ρ1y(qx), ρ2y

′(qx)
)
, x ≥ x0,

y(x) = ϕ(x), x ≤ x0,

(2)

where y(x) = ϕ(x) is the given initial function and 0 ≤ q ≤ 1, [13]. According to [2], the initial
function, ϕ(x) is defined in [ρ, x0], as shown below,

ρ = min
1≤i≤n

{
min
x≥x0

(x− τi)
}
, (3)

since for some x ≥ x0, x− τi < x0.
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2 Development of Method

Numerous scholars have found numerical solutions to the initial condition of NDVIDE. Jack-
iewicz has solved a number of neutral delay problems, and one of his monographs discusses the
multistep Adams-Moulton approach for solving NDVIDE problems, [15]. The general conver-
gence theorem is the subject of an early investigation, and the order in which these methodologies
converge is studied. Obviously, the current approach can be added to anymultistep process to ad-
dress the issues for future research. [9] have studied the explicit and implicit continuous Runge-
Kuttamethods for solving theNDVIDEwith constant delay. The numerical outcomes demonstrate
themethod’s ability to produce a continuous approximationwith a global error limited by aminor
multiple of the selected error tolerance. Subsequently, [10] has created a novel polynomial collo-
cation solution to NDVIDE with constant delay, and he has conducted a study of the global con-
vergence and local superconvergence aspects of this solution. Since themonograph solely focused
on theoretical findings, the stability characteristics of the collocationmethod are instead examined
elsewhere. [35] has focussed on the stability of numerical techniques for linear NDVIDE systems.
The system must meet a requirement in order to be asymptotically stable. Furthermore, it has
been demonstrated that all linear-methods with θ ∈

(
1
2 , 1
]
and A-stable BDF methods maintain

the delay-independent stability of their exact solutions. Later, [8] has reported recent advance-
ments and some unresolved issues in the numerical solution of NDVIDE with proportional delay.
Related functional equations are explained, together with theoretical and computational features
of collocationmethods used to solve them. Despite all the theories, due to themethod’s space con-
straints, a more thorough treatment of the precise theoretical and computational issues relevant
to the NDVIDE is not given.

Following that, [29] have examined the analytical and numerical stability of NDVIDE and
neutral delay partial differential equations (NDPDE) in addition to [35]. The test equations that
demonstrate the preservation of the delay-independent stability are considered. To support the
theoretical findings, some numerical experiments are presented. The asymptotic stability of exact
and discrete solutions to neutral multidelay integro-differential equations was the subject of [33]’s
study in the same year. The equations are resolved usingmodifications of the conventional Runge-
Kutta (RK) and LMM. It is found that, under the right conditions, these two groups of numerical
techniques preserve the continuous systems’ stability. Later, according to [31], the approximate
solution of a linear NDVIDE with three different types of equations might be discovered using
the Galerkin method with the Bernsien polynomial as the basis function. Some key formulae for
the Bernstein polynomial, which is crucial to numerical calculations, have been obtained in rela-
tion to the derivative of orthogonal polynomials. Following that, [22] have proposed a numerical
method based on a spectrum approach for the solution of DVIDE issues of the neutral type. The
approach is easily adaptable to neutral-type nonlinear DVIDE. The proportional type of NDVIDE
is then resolved under the initial conditions by [30] using a collocationmethod based on Laguerre
polynomials. The issue is simplified to a set of algebraic equations by using the Laguerre poly-
nomials, matrix operations, and evenly spaced collocation sites. Solving this system yields the
coefficients needed to arrive at an approximation of the solution to the original issue. A method
error estimation is also introduced using the residual function. The approximation is corrected
with respect to the estimated error function.

Later, [27] thought about a class of abstract neutral integro-differential inclusions in Hilbert
spaces with infinite delay the following year. By proving the Bohnenblust-Karlin fixed point the-
orem, he has found solutions to the issues. Then, new specific conditions for the asymptotic sta-
bility and boundedness of solutions to nonlinear Volterra integro-differential equations of first
order with constant retardation have been constructed by [25]. The analysis is based on the suc-
cessful construction of suitable Lyapunov-Krasovskii functionals (LKF). The results in the paper
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are new, and they have improved and completed the method taken from previous literature. In
the next year, the dissipativity and stability of the theoretical solutions of a class of nonlinear RD-
VIDEwithmixed delays are taken into account by [32]. A generalizedHalanay inequality is given
which plays an important role in the study of dissipativity and stability of IDE. Then, the gener-
alized Halanay inequality is applied to the dissipativity and stability of the theoretical solution of
RDVIDE. Finally, the results are provided to demonstrate the effectiveness and advantages of the
theoretical results.

Recent research by [3] on the asymptotic behaviors of NDVIDE issue solutions led to the dis-
covery of unique, necessary criteria for their Lyapunov method establishment. The differential
transformation method (DTM) is then used to resolve a specific case of the NDVIDE under con-
sideration. Then, [14] provided an explicit third-order blockmultistepmethod, where themethod
is obtained using the Taylor series, to solve constant type NVDIDE and RVDIDE problems. It ap-
pears that the technique can be descended from the method. Following [25], a more suitable
LKF has been constructed by [26] where they have investigated the integrability of the norm and
boundedness of solutions. A contribution to the topic of the paper and relevant literature is pro-
vided from the numerical examples for the uniformly asymptotically stability of zero solution as
well as integrability and boundedness of solutions. [17] have more recently used the Taylor col-
location method to numerically solve a kth-order NDVIDE with constant delay. The approach
is simple to use, convergent, and accurate. It will be possible to perform more research on this
type of issue by applying the results to a system of kth-order NDVIDE. The majority of earlier
authors have similarly prioritized the analytical method over the numerical method. However, a
number of one-step and multistep methods have been presented by researchers for the numerical
solutions of NDVIDEs, yet none of them have proposed a hybrid multistep block technique. The
purpose of this study is to extend the previous multistep method’s work to a multistep block with
an off-point.

3 Methodology

This section will provide a detailed description of the block method with an off-step point’s
development for the numerical solution of NDVIDE with constant or proportional delay. A spe-
cific explanation on formulation, order and convergence will be depicted thoroughly. The Adam-
Bashforth predictor mechanism is taken into consideration during the development of implicit
multistep block method with an off-step point. The idea of the proposed method is taken from
[20] and has been modified. The two-point block with the following off-step point is taken into
account,

Figure 1: Two-point block with an off-point.

The interval [a, b] is subdivided into a sequence of blocks, where each block contains two-point
including an off-point. These two points will be evaluated simultaneously where the first block
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operated as initial solutions for the next block. The process will continue for subsequent itera-
tions in other blocks until the interval’s completion. The hybrid block technique has the benefit of
minimizing the number of computational steps required.

3.1 Formulation of method

In order to solve NDVIDE with constant or proportional delay, the method has been improved
to become more straightforward and effective. Given below is the linear difference operator, L
associated with an off-step point, as indicated in [18],

L
[
y(x);h

]
=

k∑
j=0

[
αjy

(
x+ jh

)
− hβjy

′(x+ jh
)]

− hβvy
′(x+ vh), (4)

where the Taylor terms for y(x+ jh) and y0(x+ jh)will be extended such that,

L
[
y(x);h

]
= C0y(x) + C1hy

(1)(x) + · · ·+ Cqh
qy(q)(x). (5)

Local truncation error, also known as local discretization error, is the term Cq+1h
q+1y(q+1)(x) that

emerges after the truncation. In order to derive first predictor formula of the proposed method, a
k-step hybrid formula based on equation (4) is expanded as shown below to formulate the implicit
hybrid multistep block method with an off-step point,

yn+4 + α0yn+3 = h

3∑
i=0

βiy
′(x+ ih). (6)

By employing Taylor series, extending each y(x) and y′(x),

y(x+ 4h) = y(x) + 4hy′(x) + 8h2y′′(x) +
32

3
h3y′′′(x) +

32

3
h4y(4)(x),

y(x+ 3h) = y(x) + 3hy′(x) +
9

2
h2y′′(x) +

9

2
h3y′′′(x) +

27

8
h4y(4)(x),

y′(x+ h) = y′(x) + hy′′(x) +
1

2
h2y′′′(x) +

1

6
h3y(4)(x),

y′(x+ 2h) = y′(x) + 2hy′′(x) + 2h2y′′′(x) +
4

3
h3y(4)(x),

y′(x+ 3h) = y′(x) + 3hy′′(x) +
9

2
h2y′′′(x) +

9

2
h3y(4)(x).

(7)

Every derivative term is collected and formed,[
hy′(x) +

7

2
h2y′′(x) +

37

6
h3y′′′(x) +

175

24
h4y(4)(x)

]

=

[
β0 + β1 + β2 + β3

]
hy′(x) +

[
β1 + 2β2 + 3β3

]
h2y′′(x) +

[
1

2
β1 + 2β2 +

9

2
β3

]
h3y′′′(x)

+

[
1

6
β1 +

4

3
β2 +

9

2
β3

]
h4y(4)(x), (8)
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as equation (7) is substituted into equation (6). The values of the βi coefficients are calculated
after equating the left and right hand sides.

1 = β0 + β1 + β2 + β3,

7

2
= β1 + 2β2 + 3β3,

37

6
=

1

2
β1 + 2β2 +

9

2
β3,

175

24
=

1

6
β1 +

4

3
β2 +

9

2
β3,

(9)

with β0 = −3

8
, β1 =

37

24
, β2 = −59

24
and β3 =

55

24
. By letting n = n − 3, the first point predictor

formula, ypn+1 is obtained below,

ypn+1 = yn +
h

24

(
55fn − 59fn−1 + 37fn−2 − 9fn−3

)
. (10)

The derivations of the first point predictor (yp
n+ 1

2

) and the second point predictor (ypn+2) are sim-
ilar to the earlier implementations where the two original forms are displayed as follows,

yn+ 5
2
+ α0yn+2 = h

3∑
i=0

βiy
′(x+ ih), (11)

for yp
n+ 1

2

, and,

yn+6 + α0yn+4 = h

4∑
i=1

βiy
′(x+ ih), (12)

for ypn+2. Alongside, the first, ycn+1, and second point corrector formula, ycn+2, are given by,

yn+3 + α0yn+2 = h

[
3∑

i=1

βiy
′(x+ ih) +

5
2∑

v= 5
2

βvy
′(x+ vh)

]
, (13)

and,

yn+5 + α0yn+3 = h

[
2∑

i=2

βiy
′(x+ ih) +

5∑
i=4

βiy
′(x+ ih) +

7
2∑

v= 7
2

βvy
′(x+ vh)

]
. (14)

After applying the same procedure, the proposed method is obtained as shown below,

ypn+1 = yn +
h

24

(
55fn − 59fn−1 + 37fn−2 − 9fn−3

)
,

yp
n+ 1

2

= yn +
h

384

(
25fn+1 + 197fn − 37fn−1 + 7fn−2

)
,

ypn+2 = yn +
h

3

(
27fn − 44fn−1 + 31fn−2 − 8fn−3

)
,

ycn+1 = yn +
h

6

(
fn+1 + 4fn+ 1

2
+ fn

)
,

ycn+2 = yn +
h

27

(
10fn+2 + 27fn+1 + 16fn+ 1

2
+ fn−1

)
.

(15)

where the given name is, 1OBM4, which will be employed to solve NDVIDE with constant or
proportional delay types.
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3.2 Order and error constant of method

According to [16],

Definition 3.1. The hybrid method (15) is said to be of order p if,C0 = C1 = · · · = Cq = 0 andCq+1 ̸= 0
is called as an error constant where q = 2, 3 . . . .

Following [16], the order for 1OBM4 is determined as shown below,

C0 =

k∑
j=0

αj =

[
0

0

]
,

C1 =

k∑
j=0

jαj −
k∑

j=0

βj −
1∑

j=1

vjβj =

0
0

 ,

C2 =
1

2!

 k∑
j=1

j2αj − 2

(
k∑

j=1

jβj +

1∑
j=1

vjβj

) =

[
0

0

]
,

C3 =
1

3!

 k∑
j=1

j3αj − 3

(
k∑

j=1

j2βj +

1∑
j=1

v2jβj

) =

[
0

0

]
,

C4 =
1

4!

 k∑
j=1

j4αj − 4

(
k∑

j=1

j3βj +

1∑
j=1

v3jβj

) =

[
0

0

]
,

C5 =
1

5!

 k∑
j=1

j5αj − 5

(
k∑

j=1

j4βj +

1∑
j=1

v4jβj

) =

[
− 1

2880

− 1
40

]
.

Hence, 1OBM4 is of order four with error constant, C5 =

[
− 1

2880
, − 1

40

]T
. The significance of

identifying the method’s order is to identify whichever order is required to attain the requisite
accuracy.

3.3 Convergence of method

Based on [1], the LMM is said to be converged if both conditions of consistency and zero-
stability are satisfied.

Definition 3.2. A LMM is said to be consistent if it is of order p ≥ 1 and satisfies,
k∑

j=0

αj = 0, and
k∑

j=0

jαj =

k∑
j=0

βj . (16)

The proposed 1OBM4 has been proven to have order 4 = p ≥ 1. Considering the second
condition in Definition (3.2),

C0 =

k∑
j=0

αj =

[
0

0

]
,
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followed by,

k∑
j=0

jαj =

k∑
j=0

βj =

[
1

2

]
.

Therefore, the proposed method is consistent after Definition (3.2) is proven. In any real-world
problem, the determination of consistency is important since it is the key performance in predict-
ing the proposed method to be better.

Definition 3.3. A LMM is considered to be zero-stable if the root of the first characteristic polynomial below
is not greater than one, given by,

ρ(ξ) =

∣∣∣∣∣
k∑

j=0

Ajξ
k−j

∣∣∣∣∣ =
∣∣∣∣∣

1∑
j=0

Ajξ
1−j

∣∣∣∣∣,
=

∣∣∣∣A0ξ
1 +A1ξ

0

∣∣∣∣,
=

∣∣∣∣∣
[
1 0

0 1

]
ξ1 +

[
0 −1

0 −1

]
ξ0

∣∣∣∣∣ ,
=

∣∣∣∣∣
[
ξ 0

0 ξ

]
−

[
0 1

0 1

]∣∣∣∣∣ ,
=

∣∣∣∣∣
[
ξ −1

0 ξ − 1

]∣∣∣∣∣ ,
= ξ(ξ − 1),

(17)

where the values of ξj are no greater than one,

ξ(ξ − 1) = 0,

ξ = 0, 1.

Since the obtained roots, ξi, are not greater than one, the proposed 1OBM4 is shown to be
zero-stable. ρ(ξ) satisfies the root condition for the first and second point formula where it is
strongly stable. All roots of ρ(ξ) are on the unit circle, hence they are stable. Therefore, 1OBM4 is
concluded to be converged as both conditions for consistency and zero-stable are proven. Other
than definition from [1], the LMM is also said to be converged by [18] if,

lim
h→0

yi = y∗(xi), (18)

where yi is the derived approximate solution in equation (15) and y∗(xi) is the exact solution
given in equation (31) whereby x ∈ [a, b]. The applicability of any proposed method will be
discovered by analyzing the convergence for any intended method, in any differential problems.
If the approximate solution moved closer to the exact solution, as mentioned in equation (18), the
method is said to be converged. Referring to a Lipschitz condition below,∣∣∣∣∣
(
f
(
x, ρ0y

∗(x)
)
+

∫ x

x−τi

K
(
x, ρ0y

∗(x), ρ1y
∗(x− τi), ρ2y

∗′
(x− τi)

)
dx

)

−

(
f
(
x, ρ0y(x)

)
+

∫ x

x−τi

K
(
x, ρ0y(x), ρ1y(x− τi), ρ2y

′(x− τi)
)
dx

)∣∣∣∣∣ ≤ L
∣∣∣y∗(x)− y(x)

∣∣∣.
(19)
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After subtracting the approximate solution, y(x), from the exact solution, y∗(x), where, y∗n+1 −
yn+1, y∗n+2 − yn+2, y∗n − yn, . . . are denoted as dn+1, dn+2, dn, . . . respectively. Assumed that there
exists a bound, B, such as,(

1− 1

6
hL

)
|dn+1| ≤

(
1 +

1

6
hL

)
|dn|+

4

6
hL|dn+ 1

2
| − 1

2880
h5B,(

1− 10

27
hL

)
|dn+2| ≤ hL|dn|+ hL|dn+1|+

16

27
hL|dn+ 1

2
|+ 1

27
hL|dn−1| −

1

40
h5B.

Then,

|dn+1| ≤

(
1 + 1

6hL
)

(
1− 1

6hL
) |dn|+ 4

6hL(
1− 1

6hL
) |dn+ 1

2
| − 1

2880
h5B,

|dn+2| ≤
1(

1− 10
27hL

) |dn|+ 1hL(
1− 10

27hL
) |dn+1|+

16
27hL(

1− 10
27hL

) |dn+ 1
2
|

+
1
27hL(

1− 10
27hL

) |dn−1| −
1

40
h5B.

As the steplength tends to approach zero, hence,

y∗n+1 − yn+1 = y∗n − yn.

Based on the above interpretation, the proposed block method’s convergence has been demon-
strated.

4 Stability Analysis of Method

The stability properties of 1OBM4 were investigated in this study. [6] first introduced the
analysis, and the test equation for the linear first-order NDVIDE with constant delay is provided
by,

y′(x) = ξy(x− τ) + ν

∫ x−τ

0

y(u)du+ ηy′(x− τ), (20)

while the linear first-order NDVIDE with proportional delay is given by,

y′(x) = ξy(qx) + ν

∫ qx

0

y(u)du+ ηy′(qx). (21)

Assume for the purpose of convenience that x−τ = qx = mh, (m ∈ I) and y(x−τ) = y(qx) = ynr,
[21]. The corrector multistep formula for 1OBM4 is rearranged as shown below,

2∑
j=0

AjYN+j = h

2∑
j=0

BjFN+j . (22)

A stability area is built to identify any appropriate steplength to be utilized in the mathematical
calculation of the NDVIDE. By substituting the test equation into equation (22) above yields to,

2∑
j=0

AjYN+j = h

2∑
j=0

Bj

(
ξYN+j−m + ν

∫ N+j−m

0

Y (u)du+ ηY ′
N+j−m

)
. (23)
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The quadrature rule adapted in obtaining the stability region is Simpson’s rule where it is applied
to each subinterval, with the results being summed to produce an approximation for the integral
over the entire interval. This sort of approach is named as the composite Simpson’s rule,∫ x

0

y(u)du = h

(
1

3
YN−2 +

4

3
YN−1 +

1

3
YN

)
, (24)

will be applied in the equation (23). After implementing the above requirements, and replacing
H1 = ηh and H2 = νh2, the stability polynomial obtained is as follows,

π(H1, H2; t) =

∣∣∣∣∣
(
A2 −

1

3
H2B2

)
tr+2 +

(
A1 −

1

3
H2B1 −

4

3
H2B2

)
tr+1

+

(
A0 −

1

3
H2B0 −

4

3
H2B1 −

1

3
H2B2

)
tr +

(
− 4

3
H2B0 −

1

3
H2B1

)
tr−1

+

(
− 1

3
H2B0

)
tr−2 +

(
−H1B2 − ηB2

)
t2 +

(
−H1B1 − ηB1

)
t1

+

(
−H1B0 − ηB0

)
t0

∣∣∣∣∣,
(25)

while,

π(H1, H2; t) =

∣∣∣∣∣
(
A2 −

1

3
H2B2

)
tr+2 +

(
A1 −

1

3
H2B1 −

4

3
H2B2

)
tr+1

+

(
A0 −

1

3
H2B0 −

4

3
H2B1 −

1

3
H2B2

)
tr +

(
− 4

3
H2B0 −

1

3
H2B1

)
tr−1

+

(
− 1

3
H2B0

)
tr−2 +

(
−H1B2 − ηB2

)
t3r +

(
−H1B1 − ηB1

)
t2r

+

(
−H1B0 − ηB0

)
t0

∣∣∣∣∣,
(26)

for both constant and proportional delays respectively. By letting η = 1, the region of stability for
the 1OBM4 is depicted in the figure (for constant delay and proportional delay) below,

Figure 2: Areas of numerical stability for 1OBM4 with variousm = 1; 2; 4 values. According to [11], the region diminishes asm increases.
As the step size, h, decreases, the value of m increases, ( τ

h = m), where τ = 1. As m increases, the stability areas get progressively
smaller. The method is proved to be stable inside of its shaded region.

496



N. I. N. Ismail & Z. A. Majid Malaysian J. Math. Sci. 17(3): 487–508(2023) 487 - 508

whereH1 is the x−axis. As shown above, the first region is obtained from constant delay test equa-
tion eq.(20), while the second region is obtained from proportional delay test equation eq.(21). It
is proven that the different values of m applied will affect the size of the stability region.

Definition 4.1. If all roots of the stability polynomial satisfy |rs| < 1, s = 1, 2, . . . , k, the hybrid multistep
approach is said to be absolutely stable and to be absolutely unstable if it is otherwise. [18].

The stability regions are established in
(
H1 − H2

)
plane by substituting r = 1, −1 and r =

cos θ + i sin θ, 0 ≥ θ ≥ 2π in the stability polynomial obtained. For r = cos θ + i sin θ, the real
and imaginary parts are separated and solved simultaneously to obtain the points in the regions.
Since the set of all roots in the stability polynomial satisfy |rs| < 1, s = 1, 2, . . . , k, then the stability
regions obtained are absolutely stable (the numerical solution decays to zero). According to [24],

Definition 4.2. Consider a stable method concerning the test equation and an interpolant y has a constant
m = 1, the resulting VDIDE method is GPN-stable.

From the abovedefinitions, it is clear that any stability test that is concernedwith the value ofm,
is named GPN-stable while the region satisfies |rs| < 1, s = 1, 2, . . . , k, for the roots of the stability
polynomial is called an absolute stability region. Some of the authors that have been discussing
on GPN stability region are [24, 7] and [34]. Hence, the name of stability regions obtained for
1OBM4 is GPN-stable with absolute stability regions.

5 Implementation of Method

5.1 Implementation of solving NDVIDEs for constant delay

Let’s consider the constant type of NDVIDE as in equation (1). The constant type of NDVIDE
has been solved by implementing 1OBM4 where two approximations including two off-point are
estimated in one block using the constant step size technique. Additionally, the position of delays
needs to be known first before preceding the calculation of the proposed method. Two functions
of delays which are the delay terms itself, y(x − τ) and its derivatives, y′(x − τ) are taken into
consideration. The delay derivative has been solved in different way by other authors such as the
use of the first derivative strategy. In this research, y′(x − τ) will be evaluated by applying the
backward and forward divided difference formula. The divided difference formula of order 4 is
denoted as below,

y′n =
−2yn + 9yn−1 − 18yn−2 + 11yn−3

6h
(BDF4),

y′n =
−11yn + 18yn+1 − 9yn+2 + 2yn+3

6h
(FDF4).

(27)

As for the value of the delay itself, τi, the initial function given in (1) will be applied if x− τi < a.
Otherwise, a Lagrange interpolation polynomial will be used if x − τi ≥ a. But, a constant delay
case usually does not involve the evaluation of Lagrange as the delay terms will fall perfectly
on the previous approximate values. The location of the delay must be discovered first in order
to find both solutions of y(x − τ) and y′(x − τ). The integration part is solved by applying the
composite Simpson quadrature rule. Simpson’s rule is applied to each subinterval, summing the
results to obtain an approximation for the integral over the entire This type of approach is called
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the composite Simpson’s rule. Suppose that the interval [a, b] is divided into n subintervals, where
n is an even number. Then the composite Simpson’s rule is given by,

∫ b

a

f(x) dx ≈ h

3

n/2∑
j=1

[
f(x2j−2) + 4f(x2j−1) + f(x2j)

]
,

=
h

3

[
f(x0) + 2

n/2−1∑
j=1

f(x2j) + 4

n/2∑
j=1

f(x2j−1) + f(xn)

]
,

(28)

where xj = a+ jh for j = 0, 1, . . . , n− 1, n,with h = b−a
n in particular, x0 = a and xn = b. Before

implementing 1OBM4, the initial solutions for the proposed methods need to be considered as
they are both multistep block methods which do not stand on their own. Four initial solutions
need to be approximated first for 1OBM4 since the predictor formulae are of order 4. A Runge-
Kutta of order 4 (RK4) has been chosen to evaluate the initial solutions for the proposed method
before applying 1OBM4. The formula of RK4 is shown as below,

yn+1 = yn +
h

6

(
k1 + 2k2 + 2k3 + k4

)
,

k1 = f

(
xn, yn +

∫ n

n−m

K

(
xn, yn−m, y′n−m

))
,

k2 = f

(
xn +

h

2
, (yn +

h

2
k1) +

∫ n

n−m

K

(
xn +

h

2
, yn−m +

h

2
k1, y

′
n−m +

h

2
k1

))
,

k3 = f

(
xn +

h

2
, (yn +

h

2
k2) +

∫ n

n−m

K

(
xn +

h

2
, yn−m +

h

2
k2, y

′
n−m +

h

2
k2

))
,

k4 = f

(
xn + h, (yn + hk3) +

∫ n

n−m

K

(
xn + h, yn−m + hk3, y

′
n−m + hk3

))
.

(29)

The numerical result will be computed by C programme with a constant step size. The algorithm
for 1OBM4 is illustrated in detail on how to handle the integral part, the delay term, and its deriva-
tive. The following notations are used in the program :

a Initial value
b End value
h step size
N Number of iteration
y0 Initial solution
y′(x− τ) Delay derivative
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Algorithm of 1OBM4

Step 1 : All values given in equation, x0 = a, xn = b, h,N, y0, y
′(x− τ) ≤ a are set.

Step 2 : The volterra integro-differential equation of neutral delay is defined:
y′(x) = f

(
x, ρ0y(x)

)
+
∫ x

x−τi
K
(
x, ρ0y(x), ρ1y(x− τi), ρ2y

′(x− τi)
)
.

Step 3 : If x− τ ≤ a, then the original function given is used.
Step 4 : If x− τ ≥ a, then the delay terms are solved by applying any associated prior

solution.
Step 5 : Backward or forward divided difference formulae are applied to find y′(x−τ).
Step 6 : Composite Simpson is applied to approximate the integral part.
Step 7 : For n = 0, 1,

The initial solution is computed by applying RK4 denoted in equation (29).
Step 8 : For n = 2, 4, 6, . . .

Approximate NVDIDE by using the proposed method, 1OBM4.
Step 9 : Maximum and average error, total steps taken, function calls evaluatedand

time consumed is calculated computationally.
Step 10 : Stop.

5.2 Implementation of solving NDVIDEs for proportional delay

Let’s consider the pantograph type of NDVIDE, as mentioned in equation (2) previously. ND-
VIDE with pantograph equation will be solved by implementing 1OBM4 where the solutions will
be evaluated by approximating two iterations in one block including the off-point. The positions
of the delay terms and its derivative need to be determined whether those delays are going to
be estimated using Lagrange interpolation polynomial, any additional derived method or only
applying the previously estimated solutions. A constant step size technique is applied in approx-
imating each iteration for the derived implicit hybrid method. Before implementing 1OBM4, an
implicit Euler method is applied to find the solutions of the initial values. A second-order Euler
method is chosen to be applied to the first few iterations since pantograph type of NDVIDE has a
unique behavior. The formula of the implicit Euler is shown below,

ypn+1 = yn + hf

(
xn, yn +

∫ n

n−m

K
(
xn, yn−m, y′n−m

))
,

ycn+1 = yn +
h

2

[
fp

(
xn, yn +

∫ n

n−m

K
(
xn, yn−m, y′n−m

))

+ f

(
xn, yn +

∫ n

n−m

K
(
xn, yn−m, y′n−m

))]
.

(30)

Pantograph equation is usually estimated by Lagrange interpolation polynomial which needs a
number of points in order to achieve higher order polynomial and obtain great accuracy in the
approximation. The problem arises in pantograph equation as the previous points on the interval
are inadequate for higher order Lagrange. The behavior of pantograph equation has made it inac-
curate if being solved using any higher-order method directly. Thus, the reason explained that the
first few iterations of pantograph equation need to be handled carefully using lower order method
since it can cope well with lower-order Lagrange interpolation polynomials. The formula of the
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Lagrange interpolation polynomial is shown as follows,

P (x) = Ln,0(x)f(x0) + . . .+ Ln,n(x)f(xn),

=

n∑
k=0

f(xk)Ln,k(x),

where,

Ln,k(x) =

n∏
i=0
i̸=k

(x− xi)

(xk − xi)
,

where k = 0, 1, . . . , n.

Another approach to estimating the proportional delay term is by applying an additional derived
method. This is a helpful approach since the delay term will usually fall exactly on the point in
the derived formula. The additional formula is given by,

yn+ 1
2
= yn +

h

2

[
f

(
xn, yn +

∫ n

n−m

K
(
xn, yn−m, y′n−m

))]
.

Then, the proposed block method, 1OBM4 will be applied in order to continue the calculations.
When solving the pantograph equation, the method uses fewer function calls and total steps than
when solving the constant type. This is due to the application of an implicit Euler, which does not
requiremany steps and functions in its calculation. Asmentioned in the constant delay section, the
derivative of the delay term, y′(qx) is solved by implementing both backward and forward divided
difference formulas in (27). The integral part will be solved by applying Composite Simpson’s
rule in (28). The idea of applying the composite quadrature formula is taken from [4] where
the integration part is solved by using Boole’s quadrature rule. The algorithms for the implicit
hybrid multistep block method are constructed using C language with a constant step size. The
numerical result obtained has shown the applicability and efficiency of both methods in solving
proportional types of NDVIDE. The algorithm for 1OBM4 in solving the pantograph equation is
shown below,

Algorithm of 1OBM4

Step 1 : All values given in equation, x0 = a, xn = b, h,N, y0, y
′(qx) ≤ a are set.

Step 2 : The volterra integro-differential equation of neutral delay is defined:
y′(x) = f(x, ρ0y(x)) +

∫ x

qx
K
(
x, ρ0y(x), ρ1y(qx), ρ2y

′(qx)
)
.

Step 3 : If qx ≤ a, then the original function given is used.
Step 4 : If qx ≥ a, then the delay terms are solved by applying Lagrange interpolation

polynomial, the additional method or any associated prior solution.
Step 5 : Backward or forward divided difference formulae are applied to find y′(qx).
Step 6 : Composite Simpson is applied to approximate the integral part.
Step 7 : For n = 0, 1,

The initial solution is computed by applying implicit Euler denoted in equa-
tion (30).

Step 8 : For n = 2, 4, 6, . . . ,
Approximate NVDIDE by using the proposed method, 1OBM4.

Step 9 : Maximum and average error, total steps taken, function calls evaluated and
time consumed is calculated computationally.

Step 10 : Stop.
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Unlike constant NDVIDE, the pantograph equation needs a different implementation which
has been stated in Step 4 where Lagrange interpolation polynomial or additional methods are
involved. The implicit Euler of order two is chosen to be applied as the initial solution since it has
the same order as Lagrange for the starting point. After completing the estimation for all initial
solutions required, the proposed method 1OBM4 is then applied.

6 Numerical Results

In this segment, five NDVIDE with constant or proportional delay problems have been ad-
dressed by employing 1OBM4. Example 6.1, 6.2 and 6.3 are taken from [31], [19] and [10],
respectively, known as constant NDVIDE problems. For the proportional delay, Example 6.4 is
taken from [30]. The numerical results demonstrate that 1OBM4 outperforms the other methods
in terms of total steps, function calls, efficiency, and accuracy. Tables 1-4 consider making use of
the notations provided below,

h : Step size.
MTD : Method.
FCN : Total function calls.
TS : Total steps.
MAXE : Maximum error.
AVERE : Average error.
TIME(s) : Time taken in second.
1OBM4 : Two-point implicit hybrid multistep block method with one off-point (Order 4).
2PBM4 : Two-point multistep block method from [23] (Order 4).
ABM4 : Adam-Bashforth-Moulton method (Order 4).
RK4 : Runge-Kutta method (Order 4).
8e-10 : 8× 10−10.

Example 6.1. Zaidan (2012), [31] (Constant delay, τ = 1)

y′(x− 1) = 1− x3

6
+

∫ x

0

(x− t)y(t)dt,

y(x) = x, x ∈ [−1, 0].

Exact solution:

y(x) = x, x ∈ [0, 1].
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Table 1: Numerical result of 1OBM4, 2PBM4, ABM4 and RK4 for Example 6.1.

h MTD FCN TS MAXE AVERE TIME(s)
0.1 1OBM4 15 7 1.8035e-04 1.0947e-04 0.031

2PBM4 16 6 5.9475e-04 2.3746e-04 0.031
ABM4 16 10 8.8359e-04 3.5425e-04 0.036
RK4 40 10 4.3693e-03 1.3981e-03 0.048

0.01 1OBM4 60 52 9.5671e-07 3.3148e-07 0.172
2PBM4 106 51 5.6509e-06 1.8918e-06 0.188
ABM4 106 100 8.4765e-06 2.8469e-06 0.219
RK4 400 100 2.9689e-04 7.6773e-05 0.234

0.001 1OBM4 510 502 9.4218e-09 3.1255e-09 1.563
2PBM4 1006 501 5.6484e-08 1.8695e-08 1.703
ABM4 1006 1000 8.4727e-08 2.8052e-08 1.790
RK4 4000 1000 2.8179e-05 7.0475e-06 1.802

0.0001 1OBM4 5010 5002 9.4147e-11 3.1134e-11 9.481
2PBM4 10006 5001 5.6484e-10 1.8675e-10 9.720
ABM4 10006 10000 4.2366e-10 1.4007e-10 9.858
RK4 40000 10000 2.8027e-06 6.9846e-07 10.53

Example 6.2. Wen and Zhou (2017), [19] (Constant delay, τ = 1)

d

dx

[
y(x)− 1

10
y(x− 1)

]
= −100y(x) +

y2(x− 1)

1 + y2(x− 1)
+

991

10
e−x − e−2x+2

1 + e−2x+2

+
1

10

∫ x

x−1

y(u)du,

ϕ(x) = e−x, x ≤ 0.

Table 2: Numerical result of 1OBM4, 2PBM4, ABM4 and RK4 for Example 6.2.

h MTD FCN TS MAXE AVERE TIME(s)
0.01 1OBM4 60 52 1.5653e-03 4.4154e-05 0.172

2PBM4 106 51 1.3946e-03 6.2132e-04 0.219
ABM4 106 100 1.3946e-03 1.1554e-04 0.188
RK4 400 100 1.1945e-03 8.1288e-04 0.306

0.001 1OBM4 510 502 4.2913e-05 2.0503e-07 1.531
2PBM4 1006 501 8.3171e-05 2.9851e-05 1.625
ABM4 1006 1000 3.4982e-05 1.0216e-05 1.688
RK4 4000 1000 2.8275e-05 2.0546e-05 1.703

0.0001 1OBM4 5010 5002 5.7309e-06 2.1361e-09 28.30
2PBM4 10006 5001 8.3317e-06 2.6690e-06 30.89
ABM4 10006 10000 3.2215e-06 1.0186e-06 30.10
RK4 40000 10000 2.2676e-06 9.8865e-07 33.22
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Example 6.3. Horvat (1999), [10] (Constant delay, τ = 1, λ = 3, µ = 1)

y′(x) = (λ− µ)eτ−x − (1 + λ− µ)y(x)− λ

∫ x

x−1

y(t)dt− µ

∫ x

x−1

y′(t)dt,

ϕ(x) = e−x, x ≤ 0.

Exact solution:

y(x) = e−x, x ∈ [0, 1].

Table 3: Numerical result of 1OBM4, 2PBM4, ABM4 and RK4 for Example 6.3.

h MTD FCN TS MAXE AVERE TIME(s)
0.1 1OBM4 15 7 1.5138e-02 3.1323e-03 0.047

2PBM4 16 6 2.5920e-02 3.5285e-03 0.068
ABM4 16 10 2.3865e-02 1.3759e-02 0.078
RK4 40 10 2.5920e-02 1.2274e-02 0.091

0.01 1OBM4 60 52 1.9373e-04 7.2909e-05 0.172
2PBM4 106 51 2.7670e-04 8.6207e-05 0.266
ABM4 106 100 1.3954e-03 7.6639e-04 0.252
RK4 400 100 2.7670e-04 1.0316e-04 0.318

0.001 1OBM4 510 502 1.5008e-05 7.2442e-07 2.063
2PBM4 1006 501 2.4008e-05 7.6263e-06 3.203
ABM4 1006 1000 1.3090e-04 7.3490e-05 3.329
RK4 4000 1000 5.7687e-06 2.8982e-06 3.540

0.0001 1OBM4 5010 5002 1.6132e-06 7.3182e-09 95.87
2PBM4 10006 5001 2.3879e-06 7.5515e-07 99.86
ABM4 10006 10000 1.3006e-05 7.3224e-06 106.9
RK4 40000 10000 6.8277e-07 4.2410e-07 119.3

Example 6.4.
(
Proportional delay, τ =

x

2

)
y′(x) = cos

(x
2

)
y
(x
2

)
+

∫ x
2

0

[
sin(t)y(t)− cos(t)y′(t)

]
dt+ cos(x),

y(0) = 0,

Exact solution:

y(x) = sin(x), x ∈ [0, 1].
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Table 4: Numerical result of 1OBM4, 2PBM4, ABM4 and RK4 for Example 6.4.

h MTD FCN TS MAXE AVERE TIME(s)
1OPBM4 51 52 1.8956e-02 7.8089e-03 0.818

0.01 2PBM4 100 51 1.9341e-02 7.8738e-03 0.869
ABM4 100 100 9.6930e-03 5.2706e-03 0.875
RK4 400 100 4.7846e-01 7.6494e-03 0.963
1OPBM4 501 502 1.9335e-03 7.9580e-04 3.726

0.001 2PBM4 1000 501 1.9605e-03 8.0275e-04 4.813
ABM4 1000 1000 9.8049e-04 5.3539e-04 5.195
RK4 4000 1000 4.7932e-01 7.6658e-04 5.405
1OPBM4 5001 5002 1.9373e-04 7.9730e-05 56.170

0.0001 2PBM4 10000 5001 1.9631e-04 8.0430e-05 63.120
ABM4 10000 10000 9.8159e-05 5.3622e-05 69.364
RK4 40000 10000 4.7942e-01 7.6675e-05 104.100

6.1 Order of convergence for 1OBM4

Other than the approximate solution in equation (15), the exact solution is also taken into
consideration,

y∗n+1 = yn +
h

6

(
fn+1 + 4fn+ 1

2
+ fn

)
− 1

2880
h5y∗(5)(ξn),

y∗n+2 = yn +
h

27

(
10fn+2 + 27fn+1 + 16fn+ 1

2
+ fn−1

)
− 1

40
h5y∗(5)(ξn).

(31)

to estimate the order of convergence for 1OBM4. The formula to estimate the order of convergence
is given by,

q =
log
(

enew
eold

)
log
(

hnew
hold

) , (32)

where,

enew =
∣∣∣exact value− approximate value with hnew steplength

∣∣∣,
eold =

∣∣∣exact value− approximate value with hold steplength
∣∣∣,

hnew = steplength at (i+ 1)th stage,
hold = steplength at (i)th stage.

Therefore, the order of convergent is obtained as follows,

q =
log
(

1.8035e−04
9.5671e−07

)
log
(

0.1
0.01

) = 2.2753.

The enew = 1.8035e − 04 and eold = 9.5671e − 07, are taken from the maximum error in Table
1 at h = 0.1 and h = 0.01 from 1OBM4 respectively. The value for the order of convergence
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should approach 4 since the order of the proposed method is four. Some constraints have affected
the value obtained since the solutions for NDVIDE involve the delay problem. The order of the
method at the beginning of the interval should be low to solve the delay since the points calculated
are not enough. Thus, any higher-order method applied will cause some restrictions.

7 Discussion

In this contribution, the given examples have indicated and illustrated some roles that may be
played by NDVIDE in modeling certain cell development phenomena that exhibit a time lag in
responding to events. In Examples 6.1 and 6.3, it is obvious that τ = 1 is a constant delay, and
based on [5], any τ ≥ 0 defined an average time for the cell division. The proposed method has
performed very well in solving NDVIDE in Examples 6.1 and 6.3 where the accuracy in maximum
and average error is getting better. Hence, the method is proven to reduce any causing-delay
element in cell development. As in Example 6.2, the NDVIDE denotes the cell-death rate since
−ρ0 = −100 ≤ 0. Cell death is defined as the failure of a biological cell to perform its functions.
This could be due to a natural process in which old cells die and are replaced by new ones, as in
programmed cell death, or it could be due to events such as diseases, localized injury, or the death
of the organism of which the cells are apart. The function reduction from 1OBM4 has increased
its advantage in reducing the cell-death rate compared to other methods. Other than that, the
proposed method also managed to produce accurate results (able to produce healthy cells) even
in a longer time (bigger N).

Finally, from the numerical results obtained in Example 6.4, the proposed method has pro-
duced comparable results to the other two methods (2PBM4 and ABM4). Nonetheless, the time
consumed in seconds (s) for the produced techniques is lesser than that of the comparison meth-
ods since the points acquired in developing the methods do not require recalculation after iter-
ations as 2PBM4 does. The hybrid approaches have also reduced the number of steps required
when compared to ABM4 and RK4 (non-block methods). In terms of function calls and time
spent, the proposed methods outperformed all comparison methods.

8 Conclusion

Compared to the previous methods, the proposed method has shown to be applicable and ef-
ficient in modeling NDVIDE problems with constant or proportional delays by predicting a few
points at a time and incorporating the off-point in the predictor. Since the main goal of the discus-
sion is to demonstrate the benefits of an implicit hybrid multistep block method, all parameters in
comparing block and non-block methods must be addressed.
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